
A Linear-Time Algorithm for Optimal Barrier Placement

Alain Darte
CNRS, LIP, ENS Lyon

46, Allée d’Italie,
69364 Lyon Cedex 07, France

Alain.Darte@ens-lyon.fr

Robert Schreiber
Hewlett Packard Laboratories,

1501 Page Mill Road,
Palo Alto, USA

Rob.Schreiber@hp.com

ABSTRACT
We want to perform compile-time analysis of an SPMD pro-
gram and place barriers in it to synchronize it correctly,
minimizing the runtime cost of the synchronization. This is
the barrier minimization problem. No full solution to the
problem has been given previously.
Here we model the problem with a new combinatorial

structure, a nested family of sets of circular intervals. We
show that barrier minimization is equivalent to finding a hi-
erarchy of minimum cardinality point sets that cut all inter-
vals. For a single loop, modeled as a simple family of circular
intervals, a linear-time algorithm is known. We extend this
result, finding a linear-time solution for nested circular in-
terval families. This result solves the barrier minimization
problem for general nested loops.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures; D.3.4
[Programming Languages]: Processors—Compilers, Op-
timization; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—
Computations on discrete structures

General Terms
Algorithms, Languages, Theory

Keywords
Barrier synchronization, circular arc graph, nested circular
interval graph, SPMD code, nested loops

1. STATIC OPTIMIZATION OF BARRIER
SYNCHRONIZATION

A multithreaded program can exhibit interthread depen-
dences. Synchronization statements must be used to ensure
correct temporal ordering of accesses to shared data from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

different threads. Explicit synchronization is a feature of
thread programming (Java, POSIX), parallel shared mem-
ory models (OpenMP), and global address space languages
(UPC [10], Co-Array Fortran [3]). Programmers write ex-
plicit synchronization statements. Compilers, translators,
and preprocessors generate them. In highly parallel ma-
chines, synchronization operations are time consuming [1].
It is therefore important that we understand the problem
of minimizing the cost of such synchronization. This paper
takes a definite step in that direction, beyond what is present
in the literature. In particular, we give for the first time a
fast compiler algorithm for the optimal barrier placement
problem for a program with arbitrary loop structure.
The barrier is the most common synchronization prim-

itive. When any thread reaches a barrier, it waits there
until all threads arrive, then all proceed. The barrier or-
ders memory accesses: memory operations that precede the
barrier must complete and be visible to all threads before
those that follow. Even with the best of implementations,
barrier synchronization is costly [7]. All threads wait for the
slowest. Even if all arrive together, latency grows as log n
with n threads.
Careful programmers may do a good job of placing barri-

ers. But experimental evidence indicates that in automat-
ically parallelized code there is a lot of room to improve
the barrier placement and reduce synchronization cost [8].
Moreover, it is difficult to write correct parallel code, free
of data races. We would therefore like to be able to min-
imize the cost of barriers through compiler optimization.
A practical, automatic compiler barrier minimization algo-
rithm would make it appreciably easier to write fast and
correct parallel programs by hand and to implement other
compiler code transformations, by allowing the programmer
or other compiler phases to concentrate on correctness and
rely on a later barrier minimization phase for reducing syn-
chronization cost.
We call an algorithm correct if it places barriers so as to

enforce all interthread dependences, and optimal if it is cor-
rect and among all correct barrier placements it places the
fewest possible in the innermost loops, among such it places
the fewest at the next higher level, etc. In their book on
the implementation of data parallel languages, Quinn and
Hatcher mention the barrier minimization problem [5] and
discuss algorithms for inner loops but not more complicated
program regions. O’Boyle and Stöhr [8] make several inter-
esting contributions. Extending the work of [5], they give
an optimal algorithm for an inner loop with worst-case com-
plexity O(n2), where n is the number of dependences, and

an algorithm that finds an optimal solution for any semiper-
fect loop nest, i.e., a set of nested loops with no more than
one loop nested inside any other. Its complexity is quadratic
in the number of statements and exponential in the depth
of the nest. Finally, they give a recursive, greedy algorithm
for an arbitrarily nested loop, and finally for a whole pro-
gram. This algorithm is correct, and it will place the fewest
possible barriers into innermost loops. But it doesn’t always
minimize the number of barriers in any loop other than the
innermost loops.
We describe (for the first time) and prove correct and

optimal an algorithm for barrier minimization in a loop nest
of arbitrary structure. The algorithm is fast enough to be
used in any practical compiler: it runs in time linear in the
size of the program and the number of dependence relations
it exhibits.
A longer report, with proofs of all results and some fuller

explanations than permitted by conference paper format, is
available [4].

2. THE PROGRAM MODEL AND A
STATEMENT OF THE PROBLEM

We assume a program with multiple threads that share
variables. Each thread executes a separate copy of an iden-
tical program (single-program, multiple data, or SPMD).
Threads know their own thread identifier (mythread) and
the number of threads (threads). The threads call a barrier
routine to synchronize. Barriers divide time into epochs.
The effects of memory writes in one epoch are visible to all
references, by all threads, in the following epochs. When op-
timizing the placement of barriers in the program, we shall
move some and delete other barriers; we therefore change
the boundaries of epochs. But we make sure that any two
memory operations issued by different threads, that access
the same location, and whose temporal order was enforced
by a barrier in the original code, are still ordered by a bar-
rier in the optimized code. To do this, we carefully define
interthread dependences (see Section 2.1).
Enforcing all interthread dependences is, in general, not

enough for correctness. Indeed, after we move or delete bar-
riers, two memory operations of a single thread that occur
in separate epochs in the original program may occur in the
same epoch in the optimized program. In a relaxed con-
sistency model, this might change the order in which the
effect of these operations (on one thread) becomes visible
to other threads, and this might lead to unforeseen errors.
So we shall assume a sequentially consistent shared-memory
model here.
Another concern is the interaction of barriers and other

synchronization primitives, such as post/wait and the im-
plementation of wait as a while loop on a shared semaphore.
Consider this example:

S1: x = 0;

B1: barrier;

if (mythread == 0) {

S2: while (x == 0) {}

}

if (mythread == 1) {

S3: x = 1

}

The interthread dependences enforced by a barrier are from

S1 to S2 and from S1 to S3. If an optimizer were to insert a
barrier as follows:

S1: x = 0;

B1: barrier;

if (mythread == 0) {

S2: while (x == 0) {}

}

B*: barrier;

if (mythread == 1) {

S3: x = 1

}

this would result in deadlock. Thread 0 is now in an infinite
while loop and will never emerge, will never reach B*. By
placing barriers where they were not located in the original
code, it is possible to make such a correct program incor-
rect. The problem here is caused by the dependence from
the write at S3 to the reads at S2. Unlike the interthread
dependences enforced by barriers, this one is from a prede-
cessor statement (S3) to a successor (S2) that comes earlier
in the sequential program execution order. It is this situa-
tion that makes it unsafe to interpolate the barrier. In the
example, we could remove this possibility by simply revers-
ing the order of the two if-statements.
Thus, we must limit the kinds of synchronization, other

than barriers, allowed in our model. The unoptimized code
may not synchronize by testing in a while loop the value of a
shared variable whose value is changed by a different thread,
in a statement that comes later in the sequential execution
order.
Alternatively, we would need to extend the dependence

analysis model to capture these “backwards” interthread de-
pendences and thereby find the points in the program where
barriers cannot safely be placed, and perhaps eliminate these
possibilities by an allowable reordering of statements. In lieu
of such an analysis, we could extend the language model and
allow a programmer to create“barrier free” code regions into
which the optimizer cannot place any barrier.
Following Aiken and Gay, we also assume that the pro-

gram is structurally correct [2], which means that all
threads synchronize by calling the same barrier statement,
at the same iteration of any containing loops. The sim-
ple way to understand this is as a prohibition on making a
barrier control-dependent on any mythread-dependent con-
dition. In particular, while threads may use locks to protect
code regions, sequentializing accesses to certain data objects,
no barrier may occur in any lock-protected program region.
Structural correctness may be a language requirement [12].
We can also optimize programs in looser languages if we
discover at compile time that they have no structural cor-
rectness violations.
We can analyze and optimize any program region consist-

ing of a sequence of loops and statements, which we call
a properly nested region. We can change any properly
nested region into a single loop nest, by adding an artificial
outer loop (with trip count one) around the region. We can,
therefore, take the view from now on that the problem is to
minimize barriers in some given loop nest. In a loop nest,
the depth of any statement is the number of loops that con-
tain it. The loop statement is itself a statement and has a
depth: zero if it is the outermost loop. The nesting struc-
ture is a tree, with a node for each loop. The outermost loop
is at the root, every other loop is a child of the loop that

contains it. The height of a loop is zero if it is a leaf in the
nesting tree, otherwise it is one greater than the height of
its highest child.
To simplify the discussion, we make the following assump-

tions:

• Loops have been normalized so that the loop counters
are incremented by one. We don’t really need this, but
it allows us to simply write i + 1 when we mean the
next value of the loop index i.

• For optimality, we assume that loops don’t contain IF-
THEN-ELSE statements. Otherwise we solve the bar-
rier placement in each branch first (as O’Boyle and
Stöhr do), before treating the rest of the loop nest.
This is correct but sub-optimal. Thus, our algorithm
is optimal only for a loop nest with no dependences
between statements in IF-THEN-ELSE.

• There are no zero-trip loops. This ensures that a bar-
rier placed in the body of a loop L will enforce any
dependence from a statement executed before L to an-
other executed after L. Again, this assumption sim-
plifies the discussion, but it is not really necessary for
correctness. This because we can assume this property,
solve the barrier placement problem, then re-analyze
the program and determine those loops containing a
barrier that enforces such a “long” dependence (from
before the loop to after it) and that may possibly be
zero-trip, and insert an alternative for the case where
the loop does not execute, containing another barrier:

for (i = LB; i < UB; i++) {

...; barrier; ...

}

if (UB <= LB) {barrier;}

2.1 Barriers, Dependence Relations, and
Correctly Synchronized Programs

Our problem is to place barriers to enforce interthread
dependence relations. To reason about these, we need some
preliminary notions. We denote by S(~iS) the operation
that corresponds to the (static) statement S and the par-
ticular values of the loop counters, specified by the integer
vector ~iS , for the loops, if any, in which S is nested. In an
SPMD program, each operation S(~iS) has many instances,
one for each thread that executes the portion of code that
contains it. To distinguish between instances, we denote by
S(tS ,~iS) the instance of S(~iS) executed by the thread whose
number or identifier is tS .
If statement instances s and t are executed by the same

thread then we write s ≺seq t to indicate that s precedes t

in sequential control flow. On the other hand, the bar-
rier B synchronizes S(tS ,~iS) and T (tT ,~iT), instances from

different threads, if there is an operation B(~iB) such that

S(tS ,~iS) ≺seq B(tS ,~iB) and B(tT ,~iB) ≺seq T (tT ,~iT). The

two individual barrier calls B(tS ,~iB) and B(tT ,~iB) are calls

to the same operation B(~iB) of a single barrier B; because
we target structurally correct programs, such calls always
synchronize with one another.
For operations, let us write S(~iS) ≺seq T (~iT) if sequential

control flow orders their instances on each individual thread.
We say that the barrier B synchronizes operations S(~iS) and

T (~iT) if there is an operation B(~iB) such that S(~iS) ≺seq

B(~iB) ≺seq T (~iT).
An interthread dependence relation RST between state-

ments S and T is a set of pairs of operations. At least one
of S or T is a write to a shared variable. For each pair
(S(~iS), T (~iT)) ∈ RST , there is some barrier in the source
code that synchronizes them. And finally, there are in-
stances of S(~iS) and T (~iT), not both on the same thread,
that reference the same shared variable, or at least we can-
not determine at compile time that they do not, so they
must be correctly ordered in time. From now on, when
we talk of dependences we shall mean these interthread
dependences. A barrier B enforces a dependence R if it
synchronizes every pair of operations in the relation.

2.2 Barriers, Dependence Level, and NCIF
Consider a dependence from operation S(~i) to T (~j): we

know that S(~i) ≺seq T (~j). Let c be the number of loops that

surround both S and T ; ~i and ~j have at least c components.
We use the standard notion of dependence level [11]: if the

first c components of ~i and ~j are equal, the dependence is
loop-independent at level c, otherwise it is loop-carried
at level k where k ≤ c is the largest integer such that the
first k − 1 components of ~i and ~j are equal. We view the
statements of the program as laid out from the earliest (in
program text order) on the left to the last on the right.
Thus, “to the left of” and “leftmost” mean earlier and earli-
est (with respect to program text order). We describe the
dependences as circular intervals, which we define below.
First consider the case of a loop-independent dependence.

An example is depicted in Figure 1 from S to T , at level
c = 1: a white box represents a DO, a grey box an ENDDO,
the arrow from S to T represents the control flow. The

U
S

T

Figure 1: Interval for a loop-independent depen-
dence (basic case).

dependence is represented by an open interval]S, T [(see
the bottom of Figure 1), and any barrier placed inside this
interval enforces the dependence. If we know that a loop
containing S at depth ≥ c (i.e., not around T) executes at
least once before the control flow goes to T , we represent
the dependence with a larger interval from the DO of this
loop to T (see Figure 2). If, likewise, a loop surrounding T

U
S

T

Figure 2: Case of an interval, for a loop-independent
dependence, left-extended to a DO.

iterates at least once before reaching T , then the interval is
extended on the right to the appropriate ENDDO.
Now consider a loop-carried dependence. An example

from S to T , of level k = 2, is depicted in Figure 3 where T

strictly precedes S in the program text and jk = ik +1. The

ST

Figure 3: Circular interval for loop-carried depen-
dence (basic case).

control points where a barrier needs to be inserted (and any
such control point is fine) can be represented by a circular
interval from S to T through the ENDDO and DO of the
loop at depth k−1 shared by S and T . In the example, this
means that any barrier insertion between S and the ENDDO
of the second loop, or between the DO of the second loop
and T enforces this dependence. If, on the other hand, k

is 1, the interval would be extended through the ENDDO
and DO of the first loop. Again, if we know more about
additional iterations of a loop deeper than k surrounding ei-
ther S or T , we may be able to use a wider circular interval,
whose endpoints may be a DO earlier than S (the 4th DO
in the example) or an ENDDO after T (the ENDDO of the
3rd loop in the example).
To summarize, we distinguish two types of dependence. A

dependence can be:

Type A a loop-independent dependence at level k repre-
sented by an interval]x, y[where x (resp. y) is a state-
ment or a DO (resp. ENDDO), x is textually before y,
and x and y are surrounded by exactly k common
loops: a barrier needs to be inserted textually after x

and before y, and any such barrier does the job.

Type B a loop-carried dependence represented by an in-
terval]x, y[and an integer k, where x (resp. y) is a
statement or a DO (resp. ENDDO), x is textually af-
ter y, and they have at least k common loops: a barrier
needs to be inserted textually after x and before the
common surrounding ENDDO whose depth is k − 1,
or after the common surrounding DO whose depth is
k− 1 and before y, and any such placement is fine. (A
wrap-around dependence is represented as a particular
Type B dependence, from a DO to the corresponding
ENDDO.)

Thus, our model of the barrier placement problem is a linear
arrangement of control points and a set of circular intervals.
We refer to such a model as a nested circular interval
family (NCIF). A barrier placement is equivalent to a set
of points (at which to insert barrier statements) between the
control points of the NCIF. It is correct if each interval in
the NCIF is “cut” by (i.e., contains) one or more barriers.

2.3 When is a Placement Better?
We represent the cost of a barrier placement P for a loop

nest by a vertex-weighted tree T = cost(P), whose struc-
ture is that of the nesting structure of the loop nest. Each

vertex v (interior or leaf) has a weight b(v) given by the
number of barriers in the strict body of the loop (not in a
deeper loop) to which v corresponds. Define a partial or-
der ¹ among tree costs as follows:

Definition 1. Let T and U be the tree costs of two bar-
rier placements for a loop nest. Let t and u be the roots of T
and U , and (Ti)1≤i≤n and (Ui)1≤i≤n be the subtrees (rooted
at the children of t and u) of T and U . We say that T is
less than or equal to U (denoted T ¹ U) if

• Ti ¹ Ui, for each i, 1 ≤ i ≤ n, and

• if, for each i, 1 ≤ i ≤ n, Ti = Ui, then b(t) ≤ b(u),

If T ¹ U and T and U are different weighted trees, we say
that T is less than U (that we denote by T ≺ U).

Now we can compare barrier placements P and Q: P is
better than Q if cost(P) ≺ cost(Q). We say that a barrier
placement P is optimal if it is correct and is as good or
better than every other correct barrier placement. This def-
inition of optimality is not the same thing as saying“there is
no placement better than this one.” It asserts that an opti-
mum cannot be incomparable with any other placement, but
must be as good as or better than all others. Observe that
the existence of optimal placements is not immediate, since
the relation ¹ is only a partial order. We prove that they do
in the lemma below. Moreover, the recursive definition of ¹
implies that, for a given loop L, all optimal placements have
the same tree cost and that the restriction of any optimal
placement for L to any loop L′ contained in L is optimal
for L′. We can therefore talk about the cost of a loop nest,
defined to be the tree-cost of any optimal placement.

Lemma 1. For any two correct placements P and Q, there
is a correct placement as good or better than both P and Q.
Consequently, optimal placements exist.

Proof. The proof (which is perfectly safe to skip) is by
induction on the height of the loop, i.e., the number of nested
loops it contains.
For a loop L of height 0, i.e., for an innermost loop, P is

as good or better than Q if P places no more barriers in L

than Q. Thus, any two placement costs are comparable, and
either P is better than Q (so use P), or the converse (use Q),
or they are equally good (use either).
For a loop L of height h > 0, containing n loops (Li)1≤i≤n,

consider two placements P and Q such that P is not as good
or better than Q and Q is not as good or better than P

(otherwise, there is nothing to prove), i.e., two placements
whose tree costs are not comparable by ¹. Let T and U be
their respective tree costs, and Pi and Qi be the restrictions
of P and Q to Li, with tree costs Ti and Ui. By definition
of ¹, there exist j and k, perhaps equal, such that Tj 6¹
Uj and Uk 6¹ Tk. By the induction hypothesis, there exist
placements Ri for every subtree Li, as good or better than
both Pi and Qi. In particular, each Ri is a correct placement
for Li, therefore they enforce all dependences not carried
by L and not lying in the body of L. We can extend the local
placements Ri to a placement R for L by placing a barrier
after each statement in the body of L (this is brute force, but
enough for what we want to prove). We have cost(Ri) ¹ Ti

for all i, and cost(Rj) ≺ Tj (indeed, cost(Rj) = Tj is not
possible since this would imply Tj ¹ Uj). Thus R is better
than P . Similarly R is better than Q.

What we just proved is true even if we restrict to the finite
set of placements that place in each loop at most as many
barriers as statements plus one (i.e., one barrier between any
two statements). Thus, given any two correct placements,
there is a correct placement as good or better than each.
This implies that there are optimal placements.

Note that two placements with the same tree cost (even if
they differ in the exact position of barriers inside the loops)
lead to the same dynamic barrier count. Furthermore, if
every loop iterates at least twice whenever encountered, an
optimal placement executes the smallest possible number of
barriers among all correct placements:

Lemma 2. If each loop internal to the nest iterates at
least twice for each iteration of the surrounding loop, then an
optimal placement minimizes, among all correct placements,
the number of barrier calls that occur at runtime.

Proof. (Again, the proof may be skipped.) It suffices to
show that if Q, with tree cost U , is not optimal (in terms
of ¹), then there exists a better placement P , with tree cost
T ≺ U , such that P does not induce more dynamic barriers
than Q.
Consider Q a placement for L with tree cost U , not opti-

mal with respect to ¹. Let L′ be a loop of minimal height
such that the restriction of Q to L′, with tree cost U ′, is
not optimal. By construction, U ′ is a subtree of U and all
subtrees of U ′ are optimal tree costs for their corresponding
subloops. Furthermore, for the placement Q, the number of
barriers in the strict body of L′ (i.e., b(u) where u is the
root of U ′) is strictly larger than in any optimal placement
for L′. Replace in Q the barriers in L′ (i.e., in L′ and deeper)
by the barriers of any optimal placement for L′. This gives
a partially correct placement: all dependences are enforced
except maybe some dependences that enter L′ or leave L′.
To enforce them, add a barrier just before L′ and a barrier
just after L′, so as to get a new correct placement P . The
tree cost T of P is obtained by replacing in U the subtree U ′

by the optimal subtree T ′ of L′. The root t of T ′ is such
that b(t) ≤ b(u)− 1.
By construction, P is better than Q in terms of ¹ since

b(t) < b(u). It remains to count the number of dynamic bar-
riers induced by P and Q. There is no difference between P

and Q, in terms of tree cost, for loops inside L′. So they have
the same dynamic cost. This is the same for all other loops,
except for the strict body of L′ and for the loop strictly
above L′. Consider any iteration of this loop: the difference
between the number of dynamic barriers for Q and the num-
ber of dynamic barriers for P is N(b(u)− b(t))− 2 where N

is the number of iterations of L′ for this particular iteration
of the surrounding loop. Since N ≥ 2 and b(t) − b(u) ≥ 1,
P does not induce more dynamic barriers than Q.

A key point is that to get an optimal placement for a nest,
one must select the right set of optimal placements for the
contained loops. Consider the example in Figure 4 with de-
pendences from G to A (carried by the outer loop, k = 1)
and from C to F (loop-independent at level 1). The depen-
dences internal to the inner loops are (A,D) and (C,B), as
well as (E,H) and (G,F). These allow for two local optima
for each of the inner loops: a barrier may be placed just be-
fore B or just before D, and just before F or just before H.
Clearly, there are four possible combinations of two local

optima, but only the choice of barriers just before D and
just before H leads to a global optimal, because with this
choice (uniquely) of local optima, no barriers are needed at
depth 1.

A DC E F GB H

Figure 4: A 2D example and its (unique here) opti-
mal placement.

3. THE HSU-TSAI ALGORITHM AND IN-
NER LOOP BARRIER MINIMIZATION

In this section we summarize known results for a simple
loop. First note that barrier minimization for a straight-line
code is equivalent to the minimum clique cover for an inter-
val graph. There is a greedy, linear-time algorithm that has
been rediscovered in the parallel programming literature [5,
8]: Find the first (leftmost) right endpoint of any interval,
and cut with a barrier just to the left of this endpoint. Re-
peat while any uncut intervals remain. Next, these authors
leverage this process to get a quadratic-time algorithm for
simple loops modeled with circular intervals: Try each posi-
tion in the loop body for a first barrier, which cuts the circle
making it a line; next apply the linear-time algorithm above
to get the remaining barriers; and finally choose the solu-
tion with the fewest barriers. But, as we show next, there
is already a linear-time algorithm for this problem, due to
Hsu and Tsai [6], in the graph algorithms literature.
A circular interval family (CIF) is a collection F of

open subintervals of a circle in the plane, where points on
the circle are represented by integer values, in clockwise or-
der. Each circular interval Ii in F is defined by two points
on the circle as]hi, ti[, where hi and ti are integers, and
represents the set of points on the circle lying in the clock-
wise trajectory from hi to ti. For example, on the face of a
clock,]9, 3[is the top semicircle. By convention,]t, t[∪ {t}
represents the full circle.
Two circular intervals that do not overlap are indepen-

dent. A set of intervals is independent if no pair overlaps;
α(F) is the maximum size of an independent set in F . A
set of intervals, each pair of which overlaps, is a clique and,
if they all contain a common point z, is a linear clique.
In this case, they can be cut (by a barrier) at the point z.
Note that in a circular interval family there can be non-
linear cliques: take, for example, the intervals]0, 6[,]3, 9[,
and]8, 2[. A set of linear cliques such that each interval
belongs to at least one of these cliques, is a linear clique
cover; θl(F) is the minimum size of a linear clique cover.
It is easy to see that the problem of finding the smallest set
of barriers that enforces all dependences in an inner loop is
equivalent to the problem of finding a minimum linear clique
cover (MLQC) for the CIF F given by the dependences.
The MLQC problem for an arbitrary CIF was solved with

a linear-time algorithm – O(n logn) if the endpoints are not
sorted; ours are, given the program description – by Hsu
and Tsai [6]. We use this fast solver as the basis of our

algorithm for solving the nested loop barrier minimization
problem. Let us summarize here how it works.
We assume, without loss of generality, that the endpoints

are all different. Given an interval Ii =]hi, ti[, let us define
NEXT(i) to be the integer j for which Ij =]hj , tj [is the in-
terval whose head hj is contained in]ti, tj [and whose tail tj
is the first encountered in a clockwise traversal from ti. The
function NEXT defines a directed graph D = (V,E), whose
vertex set V is F (the set of intervals) and E is the set
of pairs of intervals (Ii, Ij) with j = NEXT(i). The out-
degree of every vertex in D is exactly 1; therefore, D is a
set of directed “trees” except that in these trees, the root
is a cycle. An important property is that any vertex with
at least one incoming interval in D (it is the NEXT of an-
other interval) is minimal meaning that it does not contain
any other interval in F . Hsu and Tsai define GD(i) to be
the maximal independent set of the form Ii1 , . . . , Iik

, with
i1 = i, and it = NEXT(it−1), 2 ≤ t ≤ k, and they let
LAST(i) = NEXT(ik).

Theorem 1 (Hsu and Tsai [6]). Any interval Ii in a
cycle of D is such that GD(i) is a maximum independent
set, and so |GD(i)| = α(F). Furthermore, if α(F) > 1,
then placing a barrier just before the tail of each interval
in GD(i), and if LAST(i) 6= i, an extra barrier just before
the tail of LAST(i), defines a minimum linear clique cover,
which is also a minimum clique cover.

Algorithm 1 Barrier placement for an inner loop

Input: F is a set of n ≥ 1 circular intervals Ii =]hi, ti[, 1 ≤ i ≤
n, such that i ≤ j ⇒ ti ≤ tj

Output: NEXT(i) for each interval Ii and a MLQC for F , i.e.,
an optimal barrier placement
procedure HsuTsai(F)

i = 1; j = i
for i = 1 to n do

if i = j then . i, current interval, may have
“reached” j, current potential next

5: j = Inc(i, n) . Inc(i, n) is equal to i + 1 if i < n,
and 1 otherwise

end if

while hj /∈ [ti, tj [do . intervals still overlap
j = Inc(j, n) . Inc(j, n) is equal to j + 1 if j < n,

and 1 otherwise
end while

10: NEXT(i) = j; MARK(i) = 0
end for . at this point, NEXT(i) is computed for all i
i = 1 . start the search for a cycle
while MARK(i) = 0 do

MARK(i) = 1; i = NEXT(i)
15: end while . until cycle is detected

j = i
repeat . intervals in GD(i)

insert a barrier just before tj ; j = NEXT(j)
until Ii and Ij overlap

20: if j 6= i then . special case for LAST(i) 6= i
insert a barrier just before tj

end if

end procedure

Theorem 1 shows that for a circular interval family, θl(F)
is either α(F) or α(F) + 1. It gives a way to construct an
optimal barrier placement for inner loops. It also gives a con-
structive mechanism to find a minimum clique cover when
α(F) > 1, and this clique cover is even formed by linear
cliques. In Algorithm 1, Lines 1–11 compute the function

NEXT for each interval, and the lines following 12 compute
GD(i) and place the barriers accordingly. The fact that
the tails are sorted in increasing order is used to start the
search for NEXT(i+ 1) from NEXT(i). This implies that j

traverses at most twice all intervals and that the algorithm
has linear-time complexity. To make the study complete,
it remains to consider two special cases: a) what happens
when α(F) = 1, b) what happens when some endpoints are
equal. We prove, in the full paper [4], that the algorithm
finds an MLQC in these cases as well.

4. OPTIMAL BARRIER PLACEMENT IN
NESTED LOOPS WITH ARBITRARY
STRUCTURE

The setting now is a loop nest of depth two or more. An
algorithm for optimal barrier placement is known only for
a semiperfect (only one loop in the body of any other loop)
loop nest. Here, we provide such an algorithm for a nest of
any nesting structure.
If a barrier placement is optimal with respect to the hierar-

chical tree cost of Section 2.3, then it places a smallest allow-
able number of barriers in each innermost loop. The number
of barriers in the strict body of a loop L of height ≥ 1 is the
smallest possible among all correct barrier placements for L
whose restriction to each loop that L contains is optimal for
the contained loop. As optimality is defined “bottom-up,” it
is natural to begin to try to solve the problem that way.

4.1 Basic Bottom-Up Strategy
Before explaining our algorithm, let us consider a basic (in

general sub-optimal) bottom-up strategy. A similar strategy
is used by O’Boyle and Stöhr to handle the cases that are
not covered by their optimal algorithm, i.e., the programs
with IF-THEN-ELSE or loops containing more than one in-
ner loop. This strategy is optimal for innermost loops but,
except by chance, not for loops of height ≥ 1.

Algorithm 2 Bottom-up heuristic strategy for barrier
placement in a loop nest

Input: A loop nest L, and a set D of dependences, each with a
level

Output: A correct barrier placement, with minimal number of
barriers in each innermost loop

1: procedure BottomUp(L, D)
2: for all loops L′ included in L do

3: let u0 and v0 correspond to DO and ENDDO of L′

4: D′ = {d = (u, v) ∈ D | u, v ∈ L′, level(d)> depth(L′)}
. need to be cut in L′

5: BottomUp(L′,D′) . give a barrier placement in L′

6: CUT = {d ∈ D | d cut by barrier in L′} . D′ ⊆ CUT
7: D = D \ CUT
8: for all d = (u, v) ∈ D, v ∈ L′ do . dep. enters L′

9: v = u0

10: end for

11: for all d = (u, v) ∈ D, u ∈ L′ do . dep. leaves L′

12: u = v0

13: end for

14: end for

15: HsuTsai(D) . or any optimal algorithm for single loop
16: end procedure

To place barriers in a loop L, Algorithm 2 places barri-
ers in each inner loop L′ first (Line 5). For L′, only the
dependences that cannot be cut by a barrier in L are con-
sidered (the set D′), in other words, in L′, only the the es-

sential constraints are considered. Then, depending on the
placement chosen for L′, it may happen that, in addition to
dependences in D′, some others, entering L′ (i.e., with tail
in L′) or leaving L′ (i.e., with head in L′), are cut by an
inner barrier (Line 6). These dependences need not be con-
sidered for the barrier placement in L (Line 7). Next, any
remaining dependence that enters (resp. leaves) a deeper
loop must be changed to end before the DO (resp. start
after the ENDDO) of this loop (Lines 9 and 12), because it
must be cut by a barrier in L. Finally, the modified L is
handled as an inner loop (Line 15).
Algorithm 2 yields an optimal placement if each loop has a

unique optimal placement or if, by chance, it picks the right
optimal one at each level. The problem is thus to modify
Algorithm 2 to select judiciously, among the optimal place-
ments for contained loops, those that cut (Line 6) incoming
and outgoing dependences so that the number of barriers
determined in L (Line 15) for the remaining dependences
(Line 7) is minimized. Our main contribution is to explain
how to do this, and, moreover, how to do it efficiently.

4.2 Summarizing Inner Loop Barrier
Placements: Weaving/Unraveling

To get the optimal placement for an outer loop, one needs
to be able to determine the right optimal placement for each
loop L it contains. In particular, one needs to understand
how dependences that come into L or go out of L are cut
by an optimal placement in L. Our technique is to capture
(as explained next) how barriers in L interact with these
incoming and outgoing dependences.
Let us first define precisely what we call an incoming, an

outgoing, or an internal dependence. A dependence d =
(u, v) is internal for a loop L if it needs to be cut by a
barrier inside L (in the strict body of L or deeper), i.e., if
u ∈ L, v ∈ L, and level(d) > depth(L). The set of internal
dependences for L determines the minimal number of barri-
ers for L. Incoming and outgoing dependences for a loop L

are dependences that may be cut by a barrier inside L, but
can also be cut by a barrier in an outer loop: they are not
internal for L, but have either their tail in L (incoming de-
pendence) or their head in L (outgoing dependence). An
incoming dependence is cut by a barrier placement for L

if there is a barrier between the DO of L and its tail. An
outgoing dependence is cut by a barrier placement for L if
there is a barrier between its head and the ENDDO of L.
Let L be an innermost loop, with internal dependences

represented by a CIF F . Let θl(F) be the number of barri-
ers in any optimal barrier placement for L, or equivalently
the size of an MLQC for F . We can find θl(F), and opti-
mal placements, with the Hsu-Tsai algorithm. Each optimal
barrier placement for L is a set of barriers placed at precise
points in the loop body; obviously, one of these inserted bar-
riers is the leftmost and one of them is the rightmost. Let d
be an incoming dependence that can be cut by some opti-
mal barrier placement for L. Denote by RIGHTMOST(d)
the rightmost point before which a barrier is placed in an op-
timal barrier placement for L that cuts d. (This will be the
tail of d, the tail of an internal dependence, or the ENDDO
of L.) If d and d′ are two incoming dependences, with the tail
of d to the left of the tail of d′, then RIGHTMOST(d) is to
the left of RIGHTMOST(d′) (they are possibly equal). We
will explain later how we can compute the function RIGHT-
MOST in linear time for all incoming dependences.

To capture the influence of the inner loop L on the barrier
placement problem for its parent loop, the key idea is that
the inner solution is determined by the leftmost incoming
and the rightmost outgoing dependences that it cuts. The
same information can be gleaned if we change the tail of
each incoming dependence d to RIGHTMOST(d), remove
the intervals internal to L, then “flatten” the NCIF by rais-
ing the body of L to the same depth as the DO and ENDDO,
meaning that in defining an optimal placement for this flat-
tened NCIF, the tree cost function treats barriers between
the DO and ENDDO as belonging to the tree node of the
parent of L. If L had some internal dependences, an interval
from DO to ENDDO is added in their place, guaranteeing
that a barrier will be placed between them. This operation,
which we call weaving, is described in Algorithm 3. Af-
ter weaving an innermost loop L for an NCIF F , we obtain
a new NCIF F ′ that corresponds to a nest with same tree
structure as F except that the leaf node of L is gone.

Algorithm 3 Weaving of an innermost loop

Input: An innermost loop L, a set D of internal dependences,
Din of incoming dependences, Dout of outgoing dependences.
(Reminder: Din ∩ Dout may be nonempty.)

Output: Modify incoming and outgoing dependences, and re-
turn a special dependence dL.
procedure Weaving(L, D, Din, Dout)

let u0 and v0 be the DO and ENDDO of L (statements
in the parent loop of L)

for all d = (u, v) ∈ Din do

if d is not cut by any optimal barrier placement in L
then

5: v = u0 . change its tail to the DO of L
else . summarize the rightmost solution

v = RIGHTMOST(d) . new endpoint considered
as a statement in the parent loop of L

if d is also in Dout and v is now to the right of u
then

u = v . new wrap-around dependence,
represented as]v, v[

10: end if

end if

end for

for all d = (u, v) ∈ Dout do

if d is not cut by any optimal barrier placement in L
then

15: u = v0 . change its head to the ENDDO of L
end if

end for

if D 6= ∅ then

create a new dependence dL = (u0, v0), loop indepen-
dent at level depth(L)

20: return dL

else

return ⊥
end if

end procedure

Assume we generate an optimal placement for the flat-
tened NCIF. The process to go from an optimal placement P ′

for F ′ to an optimal placement P for F is called unravel-
ing. The idea is to find the optimal barrier placement in the
body of L that cuts the same incoming and outgoing inter-
vals as were cut by those in P ′. Unraveling works as follows.
In P ′, there will be either zero, one, or two barriers between
the DO and ENDDO of L (considered as statements in the
parent loop of L); not more, because barriers after DO and
before ENDDO suffice to cut the special interval dL (Line 19
in Algorithm 3) and all transformed incoming and outgoing

intervals. If zero, then no barriers are needed in L. If two,
the one to the left can be moved to just before the DO (so
it cuts all incoming intervals) with no loss of correctness.
Thus, we can assume there is one. It may occur just before
the ENDDO (i.e., the tail of dL), in which case we would
select the rightmost optimal solution for L. Or it may oc-
cur before the tail of an incoming interval d, which in the
original NCIF F had a different tail. The inner solution we
need is then the rightmost one that cuts this incoming de-
pendence in F , i.e., whose leftmost barrier is to the left of
the original tail of d, because it will cut exactly the same
set of arcs in F as were cut by the one barrier in F ′. This
is the unraveling process.
To summarize, we find the optimal placement for a loop

nest as follows. First build its NCIF model. Then weave
(and remove) innermost loops one at a time until one loop
with a simple CIF model remains. Use the Hsu-Tsai method
to find an optimal placement for it. Then successively apply
the unraveling process to inner loops in a top-down manner
until an optimal placement for the entire nest is obtained.
We illustrate this process below on two examples. In the full
paper [4], we fill in the gaps in the informal proof we have
given here of this, our main result:

Theorem 2. Weaving an innermost loop and unraveling
the resulting placement produces an optimal placement.

Consider again the example of Figure 4, which we repro-
duce in Figure 5 for convenience. The first innermost loop L1

A DC E F GB H

d3

d4

d6
d2

d1 d5

Figure 5: The 2D example of Figure 4.

has 2 internal dependences d1 = (A,D) and d2 = (C,B).
All optimal placements have one barrier. The rightmost
places a barrier just before D (which cuts the only out-
going dependence d4 = (C,F)); the only incoming depen-
dence d3 = (G,A) is not cut by any optimal placement thus
the weaving procedure moves its tail to the DO of L1. We
introduce a new dependence dL1

to capture the rightmost
placement from the DO to the ENDDO of L1 (remember-
ing that if a barrier is placed just before the tail of dL1

for barrier placement in an outer loop, this means placing
a barrier just before D in the inner loop). For the second
innermost loop L2, the situation is the same for internal de-
pendences, one barrier is enough, and the rightmost place-
ment is with a barrier just before H. However, this time,
the incoming dependence d4 is cut by an optimal placement
and RIGHTMOST(d4) is the tail of d4 (so no change of tails
is needed here, this is a particular case). A new depen-
dence dL2

is introduced similarly. The simple CIF obtained
after weaving both inner loops is depicted in Figure 6.
The function NEXT is: NEXT(d3) = dL1

, NEXT(dL1
) =

dL2
, NEXT(dL2

) = dL1
, and NEXT(d4) = d3. Therefore,

the Hsu-Tsai algorithm tells us that two barriers are needed,
one before the tail of dL1

, one before the tail of dL2
. The

unraveling procedure interprets this as using the rightmost

GFC

d4

d3

dL2
dL1

Figure 6: Woven CIF for the NCIF of Figure 5.

placement for L1, i.e., placing a barrier just before D, and
the rightmost placement for L2, i.e., placing a barrier just
before H, as depicted in Figure 4.
Consider now an example of O’Boyle and Stöhr [8], Fig-

ure 7. Only one barrier is needed in the innermost loop L1

A

B C
D

d1

d3

d2

Figure 7: A 3D example from O’Boyle and Stöhr.

for the internal (loop-carried) dependence d2 = (C,B). The
rightmost placement places a barrier just before the ENDDO
of L1. This cuts the outgoing dependence d3 = (B,D). The
incoming dependence d1 = (A,C) can also be cut by an op-
timal placement in the innermost loop, with a (rightmost)
barrier before B – so d1 is (A,B) now – but in this case, d3

is not cut. Therefore, weaving the innermost loop leads to
the NCIF in Figure 8. Now, the innermost loop L2 has two

A
DB

d1
d3

dL1

Figure 8: Woven NCIF for the NCIF of Figure 7.

internal dependences, dL1
and d3, and only one barrier is

needed. The incoming dependence d1 cannot be cut by an
optimal placement (if a barrier cuts d1, it cannot cut d3).
Thus, weaving L2 leads to the simple CIF in Figure 9. Two
barriers are needed, one before the tail of d2, i.e., just before
the DO of the second loop, and one before the tail of dL2

.
This second barrier is interpreted as the rightmost place-
ment for L2, i.e., a barrier just before the tail of dL1

. This
one again is interpreted as the rightmost placement for L1,
i.e., a barrier just before the ENDDO of this loop. The final
barrier placement, in Figure 7, has one barrier at depth 3
and one barrier at depth 1. This solution is optimal: it
has lower tree cost than the alternative, barriers before B

(depth 3) and D (depth 2).
In these two examples, the recursive calls to the top-down

unraveling barrier placement were always done with the spe-
cial dependences dL (i.e., the rightmost placement in each
inner loop was always selected). This is not always the case.
It may happen that the recursive call is done with an in-
coming dependence d that indicates the rightmost optimal
placement that cuts d. For example, if in the NCIF of Fig-
ure 7, d1 ends strictly after C, then it can be cut by an

A
dL2

d1

Figure 9: Woven CIF for the NCIF of Figure 8.

optimal placement for L1 (with a barrier just before its tail)
that cuts all dependences. In Figure 8, d1 and d3 will then
overlap, and an optimal placement for L2 will cut both. The
tail of d1 will not be moved to the DO, so in Figure 9, d1

and dL2
will overlap, and d1 will be selected by the Hsu-Tsai

algorithm, with only one barrier needed. This barrier will be
interpreted as the rightmost placement for L2 that cuts d1,
i.e., with a barrier before the tail of d1, and this barrier will
be interpreted deeper as the rightmost placement for L1 that
cuts d1, i.e., with a single barrier before the tail of d1.

4.3 A Linear-Time Algorithm to Compute the
Function RIGHTMOST

To get a linear-time algorithm for optimal barrier place-
ment, it remains to compute the function RIGHTMOST in
linear time. For that, we analyze more precisely the struc-
ture of rightmost placements in a CIF. This section is in-
cluded for completeness; it may be skipped at first reading.
Computing RIGHTMOST is a complexity issue; the struc-
ture and correctness of the weaving/unraveling process are
not affected. All details are given in the full paper [4]. Here
we give only the highlights.
We use the notations of Section 3. For each loop in-

dependent interval Ii, we define GDR(i) the maximal se-
quence Ii1 , . . . , Iin

of independent intervals such that i1 = i,
it = NEXT(it−1) for 2 ≤ t ≤ n, and the tail of Iit

is to the
right of the tail of Iit−1

: GDR(i) is similar to GD(i) (it is a
subset) except that we stop the sequence when we have to go
back to the beginning of the loop (GDR stands for GD to the
Right). All intervals in GDR(i) are loop-independent. We
define RIGHT(i) = in and LENGTH(i) = n. The functions
RIGHT and LENGTH can be computed, for all intervals
in F , in linear time. Indeed, we just propagate values for
RIGHT and LENGTH backwards, in the graph D defined
by the function NEXT, starting from the loop-independent
intervals whose NEXT is to the left of them, using the re-
lation RIGHT(i) = RIGHT(NEXT(i)) and LENGTH(i) =
LENGTH(NEXT(i)) + 1.
Then, to study the optimal barrier placements for F in

a loop L with respect to an incoming dependence, i.e., a
dependence whose tail v is in L, we treat it as an internal
dependence Ii = (u, v) for L, where u is just to the right of
the DO of L (i.e., to the left of any other endpoint in F) and
we study F ′ = F ∪{Ii}. Below, we assume that Ii does not
contain an interval in F (i.e., is minimal in F ′), otherwise
it is always cut by an optimal barrier placement for F . We
just need to define RIGHT(i), LENGTH(i), LAST(i), and
LASTCUT(i) (we don’t update these functions for intervals
in F , this would be more costly and useless anyway) and
to show how to use them. We first compute j = NEXT(i)
in F ′. If Ij is loop-independent and to the right of Ii, we
let RIGHT(i) = RIGHT(j), LENGTH(i) = LENGTH(j) +
1. Otherwise, we let RIGHT(i) = i and LENGTH(i) = 1.
Then, if RIGHT(i) 6= i, we consider k = NEXT(RIGHT(i))
as defined in F (otherwise, k = j). Since the head of Ii is

before the tail of any interval in F , either the tail of Ik is to
the right of the tail of Ii and LAST(i) = i, or LAST(i) = k

(Ik is then loop-carried since Ii is minimal in F ′). We also
compute LASTCUT(i) = l such that Il belongs to a cycle
of D and the tail of Il is the rightmost tail to the left of the
tail of Ii (the interval Il may not exist).
Computing the functions LASTCUT and NEXT for all

incoming intervals can be done in linear time, with an al-
gorithm similar to Algorithm 1, provided that internal in-
tervals and incoming intervals are sorted by increasing tail.
Given these functions, the next theorem shows how to de-
termine, in constant time, whether an incoming interval can
be cut by an optimal placement for F and, if this is the case,
where is the rightmost barrier.

Theorem 3. Let Ii be an incoming dependence for a loop
L with a CIF F and let θl(F) be the minimal number of bar-
riers for F . If Ii contains an interval of F , then a rightmost
placement for F cuts Ii. Otherwise:

• If LAST(i) = i and LENGTH(i) = θl(F), Ii is cut
by an optimal placement for F with barriers before the
tails of intervals in GDR(i), the rightmost one just
before RIGHT(i).

• If LAST(i) 6= i and LENGTH(i) = θl(F) − 1, Ii is
cut by an optimal placement for F , barriers before the
tails of intervals in GDR(i), plus a rightmost barrier
just before the ENDDO.

• If LAST(i) 6= i and LENGTH(i) ≥ θl(F), Ii can
be cut by an optimal placement for F if and only if
j = LASTCUT(i) exists. In this case, barriers are
just before the tails of intervals in GD(j), the right-
most barrier being just before the tail of Ik in GD(j)
where NEXT(k) = j.

In all other cases, Ii cannot be cut by an optimal barrier
placement for F .

As a corollary of this theorem, we can find an optimal
barrier placement for an NCIF in linear time. During the
whole weaving/unraveling process, each interval is examined
a constant time for every loop that it enters or leaves, and
a constant time in the loop for which it is internal (as it
will eventually be, once inner loops are woven). The over-
all complexity is therefore O(nd) where n is the number of
intervals and d the maximal depth of a loop.

5. CONCLUSION
We have presented a fast algorithm that solves the barrier

minimization problem. As with most claims for optimality
in programming optimization, ours is true (at least we be-
lieve it) up to the assumptions and definitions we have made.
While our method is theoretically superior to the simpler

method of O’Boyle/Stöhr, in practice it may not yield a
large reduction in dynamic barrier counts, as the number
of barriers placed in innermost loops is the same. We do
know, however, that it won’t increase the number of barriers.
Also, it is faster (linear complexity) than the algorithm of
O’Boyle/Stöhr for nested loops.
More importantly, removing barriers may change the load

balance characteristics of a program in such a way that an
optimized program that makes fewer calls to barrier can nev-
ertheless run slower. Consider the example of Figure 10, for

a SPMD code with two threads (each thread is depicted hor-
izontally, the corresponding statements from left to right,
either as a rectangle for long task, or a square for a short
task), and two interthread dependences. In Figure 10, the
minimum number of barriers is 1. The execution time is
the longest time (in grey in the figure) to reach the barrier
(one square, one rectangle, for the first thread), the cost of
a barrier, and again the maximum time to end the program
(one rectangle, one square, for the second thread). However,

Figure 10: Total runtime = two rectangles + two
squares + 1 barrier.

if we use two barriers instead of one as in Figure 11, the ex-
ecution time is one square, one barrier, one rectangle and
one square, one barrier, and one square, which may be less
if the time for a square and a barrier is less than the time
for a rectangle. In other words, in case of workload imbal-

Figure 11: Total runtime = 1 rectangle + three
squares + 2 barriers.

ance, minimizing the number of barriers may increase the
execution time. It would be quite interesting to extend our
model, including load balancing effects and solving for an
optimum runtime, rather than minimum barrier count.
Other optimizations, including statement reordering, loop

fusion and distribution, and other loop transformations, can
affect the synchronization cost, and ultimately the runtime,
of parallel code. Some dependences can be enforced by
point-to-point synchronization at possibly lower cost that
with a barrier (see [9] for example).

Note too that we have made some important restrictions
on the kind of program to be optimized.
Thus, considerable experience will be required to deter-

mine the best combination of optimizations for practical ap-
plication of the tools for parallel program optimization that
this and other theoretical research provide.

6. REFERENCES
[1] A. Agarwal and M. Cherian. Adaptive backoff

synchronization techniques. In Proceedings of the 16th
Annual International Symposium on Computer
Architecture (ISCA’89), pages 396–406. ACM Press,
1989.

[2] A. Aiken and D. Gay. Barrier inference. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (PoPL’98),
pages 342–354. ACM Press, 1998.

[3] Co-Array Fortran. http://www.co-array.org/.

[4] A. Darte and R. Schreiber. Nested circular intervals:
A model for barrier placement in SPMD codes with
nested loops. Technical Report RR2004-57, LIP,
ENS-Lyon, Dec. 2004. http://www.ens-lyon.fr/LIP/
Pub/Rapports/RR/RR2004/RR2004-57.pdf.

[5] P. J. Hatcher and M. J. Quinn. Data-Parallel
Programming on MIMD Computers. The MIT Press,
1991.

[6] W.-L. Hsu and K.-H. Tsai. Linear time algorithms on
circular-arc graphs. Information Processing Letters,
40(3):123–129, 1991.

[7] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems, 9(1):21–65, 1991.

[8] M. O’Boyle and E. Stöhr. Compile time barrier
synchronization minimization. IEEE Transactions on
Parallel and Distributed Systems, 13(6):529–543, 2002.

[9] C.-W. Tseng. Compiler optimizations for eliminating
barrier synchronization. In PPoPP’95: Proceedings of
the fifth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 144–155.
ACM Press, 1995.

[10] Unified Parallel C. http://upc.gwu.edu/.

[11] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1996.

[12] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance Java dialect. Concurrency: Practice
and Experience, 10(11-13):825–836, Sept-Nov 1998.

